Research Reports

Earth Pressure Behind A Retaining Wall

Principal Investigator:

Joseph G Bentler, Joseph F Labuz, Arturo E Schultz

March 2005

Report no. MnDOT 2005-14

Projects: Earth Pressure Behind a Retaining Wall

Topics: Pavement design for cold climates

Earth pressure cells, tiltmeters, strain gages, inclinometer casings, and survey reflectors were installed in fall 2002 during construction of a 26-ft (7.9-m) high Minnesota Department of Transportation (MnDOT) reinforced concrete cantilever retaining wall. A data acquisition system with remote access monitored some 60 sensors on a continual basis. Analyses of the data indicated the development of active earth pressure at the end of backfilling, with a resultant at about one-third of the backfill height. Translation of 0.45 in. (11 mm), or about 0.1% of the backfill height, was responsible for development of the active condition. The wall also rotated 0.03 degrees into the backfill as a rigid body, while the top of the stem deflected 0.16 in. (4 mm) away from the backfill. Sensor readings showed the earth pressure distribution to be quite complex during the backfilling process. Evidence was found for residual lateral stresses from compaction. Translation of the wall overnight following the construction workday reduced the compaction-induced lateral stresses. Changes in earth pressure and wall deflection weeks after backfilling were attributed to changes in temperature and rainfall. The data showed that the wall design, while reasonable, could be made more efficient by removing the shear key, which was ineffective.

Download or Order

Download PDF (3.4 MB)
For print version, view order form or contact CTS Library