Research Reports

Numerical assessment of three-dimensional rigid pavement joints under impact loads

Principal Investigator:

Amir Koubaa, Theodor Krauthammer

August 1990

Report no. Mn/DOT 1991-03

Topics: Concrete, Pavement design for cold climates

This study was conducted with the aim of improving the state of knowledge on the behavior of joints in concrete pavements, and to explore the feasibility of developing a non-destructive testing technique based on frequency response of dynamically loaded joints. One of the objectives of this study was to numerically investigate the existence of a relationship between load transfer capacity of a joint in rigid pavements and its dynamic response. The approach adapted for the present study is based on a numerical model which accurately represents the mechanism of shear transfer in reinforced concrete members implemented it in a commercially available finite element code. That tool is then used for the analysis of two models which consisted of various joint conditions. One model represented an ideal condition of full load transfer across a joint, while the other model was used to simulate variable load transfer conditions. The results obtained are analyzed in the time and frequency domains. These results provided a comprehensive description of the joint response characteristics, and enabled the derivation of a clear relationship between the response frequencies and the joint's shear transfer capabilities. The results may be used as the starting point for the development of a precise/non-destructive testing method for a wide range of cases in which shear transfer across discontinuities in concrete systems is a principal load resisting mechanism. Specific conclusions and recommendations on future developments have been provided

Download or Order

Download PDF (4.02 MB)
For print version, view order form or contact CTS Library