Research Reports

Vibration spectroscopy for rigid pavement joint assessment

Principal Investigator:

Lucio Palmieri, Theodor Krauthammer

August 1990

Report no. Mn/DOT 1991-04

Topics: Concrete, Pavement design for cold climates

This study was conducted with the aim of improving the state of knowledge on the behavior of joints in concrete pavements, and to explore the feasibility of developing a non-destructive testing technique based on the frequency response of dynamically loaded joints. One of the objectives of the present study was to experimentally investigate the existence of a relationship between load transfer capacity of a joint in rigid pavements and its dynamic response. the experimental study involved the application of an impact testing approach for the evaluation of two test systems. One system represented an ideal condition of full load transfer across a joint, while the other system was used to simulate variable load transfer conditions. Acceleration-time histories captured from both sides of the joint, under short load pulses, were used for analysis both in the time and frequency domains. These results provided a comprehensive description of the joint response characteristics, and enabled the derivation of a clear relationship between the response frequencies and the joint's shear transfer capabilities. These results may be used as the starting point for the development of a precise non-destructive testing method for a wide range of cases in which shear transfer across discontinuities in concrete systems is a principal load resisting mechanism. Specific conclusions and recommendations on future developments have been provided.

Download or Order

Download PDF (5.70 MB)
For print version, view order form or contact CTS Library