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Vehicle Transport and CO2 Emissions 

Medium and heavy duty trucks account for only ~4% of the vehicle population

https://www.epa.gov/greenvehicles/fast-facts-transportation-greenhouse-gas-emissions
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Electrification can lower net CO2 emissions

However, due to lifecycle energy use, it is not a panacea

https://www.carbonbrief.org/fact
check-how-electric-vehicles-
help-to-tackle-climate-change
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Telematics and Data Analysis

• Commercial truck sales down 
significantly in 2020

• Telematics market is growing

– 29.3 million vehicles in 2020

– 10% annual increase

– $17.1B market in the US

• Reductions in fuel use 
proportional to CO2

reductions

https://www.forbes.com/sites/sarwantsingh/2020/06/03/commercial-vehicle-sales-are-ailing-so-why-is-the-connected-truck-telematics-
market-still-in-good-health/#2daa316f7e124



Telematics: Part of the Connectivity Landscape

Vehicles will use greater levels of connectivity in the future
V2V, V2I, V2C, V2X
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Vehicle Data Vision
• Collect more and diverse datasets

• Data can be used for:

1. Analysis for design feedback

2. Predictive diagnostics

3. In-use powertrain improvement

• Develop rule-based data approaches to:

- Improve fuel economy for PHEVs

- Optimize on-route fast charging

- Predict EV range on-route

- Adjust shifting control to minimize energy use

https://www.magzter.com/article/Autom
otive/Commercial-Vehicle/Safe-Drive-
With-Telematics
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Connectivity Enables Vehicle Electrification

• Range in EVs is limited
• Depends heavily on:

– Ambient temperature
– HVAC loads
– Mass
– Driving behavior

• Connectivity can 
provide range 
confidence

• Charge optimization 
• Route planning and 

load distribution 
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Technology Description

High time resolution data
• Vehicle speed
• Powertrain parameters
• GPS location
Exogenous parameters
• Map
• Traffic density

Cloud Vehicle

resource-limited vehicle
Charging Requirements

Inputs

Powertrain recommendations
• EV mode on/off
• Hybrid mode setting
• REx engine on/off
• REx engine power
• Pure EV fast charge duration

Outputs

Infrastructure

Delivery Routing
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Portfolio of Connected Vehicle Projects

ARPA-E NEXTCAR
Connected Delivery Vehicles

2017

2021

2018

2019

2020

MnDOT
Snowplow Fuel
Consumption

LRRB/MnDOT
Hybrid 
Fleet Vehicles

DOE STTR
Route Optimization
of PHEVs

DOE
Heavy-Duty EV 
Implementation Tool

DOE/Volvo
Energy Management of 
Class 8 Electric Trucks

DOE/Exergi Predictive
EV Delivery Truck
Range Prediction
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Cloud-Connected Last Mile Delivery Vehicles

• Aim: Improve the fuel economy of 
range extender (REx)-equipped 
electric delivery vehicles through 
real-time powertrain optimization 
using two-way vehicle-to-cloud 
(V2C) connectivity

• Goal: Greater than 20% energy 
efficiency improvement of a 
baseline 2016 E-Gen delivery 
vehicle integrating routing, V2C 
and physics-aware data analytics
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Connected Energy Management

• Two Interventions: C-EMS and 
Energy Efficient Routing (EER)

• EER – Reduced energy use 
between set origin-dest. pairs with 
time penalty

• C-EMS – Minimized fuel 
consumption through practical rule-
based algorithms

Baseline

C-EMS 1

C-EMS 2
EER
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Workhorse E-Gen Vehicle
• E-GEN Vehicles are range-

extended PHEVs
- 20 kW BMW I-3 REx

- 60 kW-hr battery

- 1 kW-hr/mile average energy use

- ~ 60 mile all electric range

• UPS Fleet
- Currently 125 vehicles

- Desired end SOC = 10%

- Driver sets route distance (Lset)
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Rule-Based Control for SOC Minimization

• Vehicle data mined at 0.2 Hz for 16 
months from >100 in-use UPS E-
GEN vehicles

- Varied locations
- Different route types

Goal: Vehicle returns to depot 
each day with 10% battery state 
of charge (SOC), minimize REx
use 
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Truck Energy Use

Vehicles above green line 
use more fuel than desired

Desired SOC
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Connected Energy Management
• Implemented energy management 

strategy using reinforcement learning 
[1,2]

• Enabled over 20% MPGe improvement 
on actual routes

Testing
R1 = 15 trips
R2 = 9 trips
R3 = 12 trips

C-EMS Testing
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Rule-Based State of Charge Control
Two rules:
1. If the real-time !"# is lower than the !"#$%&, turn engine on
2. If the calculated !"#$%& is higher than 60%, set it as 60%

!"#$%& = 100%× 1 − 0.9× /
01%2

• !"#$%& = energy in battery when the vehicle has travelled / miles given
the parameter 01%2 (energy-compensated expected trips distance)

Setting Lset
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Physics-informed strategy for rule-based 
control with reinforcement learning

(Richard Sutton, Reinforcement learning: An Introduction)

Agent: The computer algorithm
Environment: low-order physics based model + historical trips
State: Available information for current trip
Reward: A function that rewards low fuel use but penalizes SOC<10%
Action: Change the Lset variable
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In-Use Example Trip
EGEN 169786
Wilmington, NC
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Trajectories of two UPS delivery trips

Date: 3/6/19
Distance: 40.59 mile
MPGe: 13.75
Fuel use: 5.67 L

Date: 3/7/19
Distance: 39.14 mile
MPGe: 17.40
Fuel use: 3.48 L

15 trips in total
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Savings found over all tested in-use 
driving days

Average MPGe Improvement = 21.8%
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Energy Efficient Routing
• Scenario-based energy consumption 

estimation [1,2]
– Trajectory-aware path selection algorithm 

developed
– Led to estimated 12% energy use 

reduction with moderate time increase
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Testing
4 training routes
20 repeated trips

EER Testing

Time Energy consumption (kWh)

Predicted Actual (average) Predicted Actual (average)

Fastest 14 min 14 min 23 sec 8.54 8.27

Energy-efficient 17 min 16 min 30 sec 5.43 5.09

[1] Li, Yan, Shashi Shekhar, Pengyue Wang, and William Northrop. "Physics-guided energy-efficient path selection: a summary of results." In Proceedings of the 
26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 99-108. ACM, 2018.
[2] Li, Yan, Pratik Kotwal, Pengyue Wang, Shashi Shekhar, and William Northrop. "Trajectory-aware Lowest-cost Path Selection: A Summary of Results." 
In Proceedings of the 16th International Symposium on Spatial and Temporal Databases, pp. 61-69. ACM, 2019.



Intelligent Energy Management System for 
Class 8 Regional Delivery

• Physics-based model + data (vehicle + exogenous)
• Predictive charging strategy for given route
• Energy efficient routing to save energy
• Optimal charger location for a fleet of EV trucks
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Development of a Heavy-Duty Electric Vehicle 
Integration and Implementation (HEVII) Tool

• Analysis of two regional Class 6-8 commercial vehicle fleets.
• Novel mass prediction algorithm using fleet trajectory data to estimate EV range
• Develop an integrated charger location estimation tool 
• Validate the developed tool23



Summary

• Medium and heavy vehicles have high carbon impact

• Electrification can significantly reduce emissions
• Telematics and connectivity is growing

• Connectivity can be used to enable electrification

• Research is using data to lower energy use, improve 
range confidence for commercial EVs
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