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Vehicle Transport and CO, Emissions

2018 U.S. GHG Emissions by Sector 2018 U.S. Transportation Sector GHG Emissions by Source

M Transportation - 28%
M Electricity - 27%

M Industry - 22%

I Agriculture - 10%

I Commercial - 7%

I Residential - 6%

M Light-Duty Vehicles - 59%

I Medium- and Heavy-Duty Trucks - 23%
I Aircraft - 9%

I Other - 5%

M Rail - 2%

I Ships and Boats - 2%

https://www.epa.gov/greenvehicles/fast-facts-transportation-greenhouse-gas-emissions

5 Medium and heavy duty trucks account for only ~4% of the vehicle population




Electrification can lower net CO, emissions
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However, due to lifecycle energy use, it is not a panacea



Telematics and Data Analysis

 Commercial truck sales down
significantly in 2020

« Telematics market is growing
— 29.3 million vehicles in 2020
— 10% annual increase
— $17.1B market in the US

« Reductions in fuel use

proportional to CO,
re d u Cti O n S Productivity Fuel Expenses Total Miles leo:v Savings Vehicle Utilization Vehicle Idie Time

Total Cost of Fleet Operation

15-20% 20-30%

https://www.forbes.com/sites/sarwantsingh/2020/06/03/commercial-vehicle-sales-are-ailing-so-why-is-the-connected-truck-telematics-
4 market-still-in-good-health/#2daa316f7e12



Telematics: Part of the Connectivity Landscape

Vehicles will use greater levels of connectivity in the future
V2V, V21, V2C, V2X




Vehicle Data Vision

 Collect more and diverse datasets

« Data can be used for:
1. Analysis for design feedback
2. Predictive diagnostics
3. In-use powertrain improvement

 Develop rule-based data approaches to:
- Improve fuel economy for PHEVs
- Optimize on-route fast charging os e regtr emlrioeon
- Predict EV range on-route e
- Adjust shifting control to minimize energy use
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Connectivity Enables Vehicle Electrification

 Range in EVs is limited « Connectivity can

» Depends heavily on: provide range
— Ambient temperature ‘ confidence
— HVAC loads « Charge optimization
— Mass * Route planning and

— Driving behavior load distribution




Technology Description

Cloud

Inputs

/High time resolution data \
* Vehicle speed
* Powertrain parameters
* GPS location
Exogenous parameters

*  Map
K- Traffic density J

Outputs

/

Powertrain recommendations
* EV mode on/off
*  Hybrid mode setting
REXx engine on/off
* REx engine power

\

\- Pure EV fast charge duration )
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Vehicle

resource-limited vehicle

ﬁ

Infrastructure
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Delivery Routing

Charging Requirements




Portfolio of Connected Vehicle Projects

T 2017
-1 2018
MnDOT LRRB/MnDOT
Snowplow Fuel Hybrid
Consumption Fleet Vehicles
-1 2019
| DOE STTR
Route Optimization DOE/Volvo
of PHEVs
Energy Management of
—+ 2020 Class 8 Electric Trucks
DOE DOE/Exergi Predictive
15001 Heavy-Duty EV EV Delivery Truck

= Implementation Tool Range Prediction




Cloud-Connected Last Mile Delivery Vehicles

PRGN
» Aim: Improve the fuel economy of Crpere
range extender (REx)-equipped
electric delivery vehicles through
real-time powertrain optimization
using two-way vehicle-to-cloud

(V2C) connectivity

» Goal: Greater than 20% energy
efficiency improvement of a
baseline 2016 E-Gen delivery
vehicle integrating routing, V2C ;
and physics-aware data analytics e

¥
CENTER FOR
TRANSPORTATION
STUDIES
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Connected Energy Management

Project Goal EER
C-EMS 2
« Two Interventions: C-EMS and C-EMS 1
Energy Efficient Routing (EER) Baseline
« EER - Reduced energy use 5 -
between set origin-dest. pairs with L
. o =
time penalty & -
»  C-EMS — Minimized fuel —
consumption through practical rule- 15 -
based algorithms T
0 T g T , T .‘
3

Base 1 2
Intervention
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Workhorse E-Gen Vehicle

 E-GEN Vehicles are range-
extended PHEVs

- 20 kW BMW 1-3 REXx

- 60 kW-hr battery

- 1 kW-hr/mile average energy use

-~ 60 mile all electric range
 UPS Fleet

- Currently 125 venhicles

- Desired end SOC =10%

- Driver sets route distance (L)

Traction
Motor

Battery

REXx
Engine/
Generator




Rule-Based Control for SOC Minimization

* Vehicle data mined at 0.2 Hz for 16 -
months from >100 in-use UPS E- M ETRON

GEN vehicles
- Varied locations -

and Asset Trackin ing Software

- Different route types

Goal: Vehicle returns to depot
each day with 10% battery state
of charge (SOC), minimize REX
use
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Truck Energy Use

End-of-Route State of Charge vs. Trip Distance
All E-GEN vehicles, calendar year 2017

Mean End-of-Route SOC (%)

Vehicles above green line

® Median Energy Intensity .
KW-hr/mile use more fuel than desired
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Connected Energy Management

* Implemented energy management
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Rule-Based State of Charge Control

Two rules:
1. If the real-time SOC is lower than the SOC,.., turn engine on
2. If the calculated SOC,. is higher than 60%, set it as 60%

-
Lset

* SOCy.r = energy in battery when the vehicle has travelled d miles given
the parameter L,.; (energy-compensated expected trips distance)

100 = |deal SOC
- Ideal SOC reference

80 - Baseline SOC
;3 Baseline SOC reference
o
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Physics-informed strategy for rule-based
control with reinforcement learning

:' Agent ||

state reward action

R (
S.. | Environment ]4—

\

(Richard Sutton, Reinforcement learning: An Introduction)

Agent: The computer algorithm

Environment: low-order physics based model + historical trips
State: Available information for current trip

Reward: A function that rewards low fuel use but penalizes SOC<10%

Action: Change the L variable
17



In-Use Example Trip
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Trajectories of two UPS delivery trips

SOC(%),Lset(mile)

SOC(%),Lset(mile)
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15 trips in total

Date: 3/6/19
Distance: 40.59 mile
MPGe: 13.75

Fuel use: 5.67 L

Date: 3/7/19
Distance: 39.14 mile
MPGe: 17.40

Fuel use: 3.48 L




Savings found over all tested in-use
driving days
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Average MPGe Improvement = 21.8%
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Energy Efficient Routing . EER Testing

“O Workhorse Headquarters |

Highpoint ;\
Workhorse Headquarters
v
@D

» Scenario-based energy consumption
estimation [1,2]
— Trajectory-aware path selection algorithm
developed
— Led to estimated 12% energy use

Sixtéen

Epworth
Heights

reduction with moderate time increase b o ST
{ : Testing
, - 4 training routes
Time Energy consumption (kWh) I.g' 20 repeated trips
Predicted Actual (average) | Predicted Actual (average) f—mr
Fastest 14 min 14 min 23 sec 8.54 8.27
Energy-efficient 17 min 16 min 30 sec 5.43 5.09

[1] Li, Yan, Shashi Shekhar, Pengyue Wang, and William Northrop. "Physics-guided energy-efficient path selection: a summary of results." In Proceedings of the
26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 99-108. ACM, 2018.

21 [2] Li, Yan, Pratik Kotwal, Pengyue Wang, Shashi Shekhar, and William Northrop. "Trajectory-aware Lowest-cost Path Selection: A Summary of Results."
In Proceedings of the 16th International Symposium on Spatial and Temporal Databases, pp. 61-69. ACM, 2019.



Intelligent Energy Management System for
Class 8 Regional Delivery

ey T . J-6. DERARTMENT °F _ | Energy Efficiency &
(}h CloutiSener I < ENERGY Renewable Energy
_ e customer data
——— _— VEHICLE TECHNOLOGIES OFFICE
grid! i/ Tvehicle data (two-way) { grid
T ¥
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destination ~ charging charging I
@ =, -’%b:fr'f'h ‘h'_”,:' =
Physics-based model + data (vehicle + exogenous) O A Moo St Grvp

Predictive charging strategy for given route QIMURPHY

Energy efficient routing to save energy
» Optimal charger location for a fleet of EV trucks
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Development of a Heavy-Duty Electric Vehicle
Integration and Implementation (HEVII) Tool

[ e e
1 1

. . . . i
: Heavy Duty Electric Vehicle Integration and Implementation (HEVII) Tool : EﬁpAERmRE,éOFY Energy Efficiency &
1
] Data Analysis HDEV Recommendations : Renewable Energy
] g : VEHICLE TECHNOLOGIES OFFICE
v

—-> b

Data Collection

L&y

Model Development
P,oqa = mav + mgsin(0)v + mgC,, cos(8)v + Cd,U:’

IEI'S GEOTAB.

iNREL @)

RENEWABLE ENERGY LABORATOR

CENTER FOR
TRANSPORTATION

« Analysis of two regional Class 6-8 commercial vehicle fleets. ST

* Novel mass prediction algorithm using fleet trajectory data to estimate EV range

» Develop an integrated charger location estimation tool
23« \/alidate the developed tool



Summary

* Medium and heavy vehicles have high carbon impact

Electrification can significantly reduce emissions

Telematics and connectivity is growing

Connectivity can be used to enable electrification

Research is using data to lower energy use, improve
range confidence for commercial EVs
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